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Nonlinear edge waves and shallow-water theory 
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Nonlinear effects are considered for shallow-water edge waves on beaches with 
a general depth distribution. The case of uniform depth away from the shoreline 
is considered in detail. It is shown that the results obtained are in qualitative 
agreement with those obtained by Whitham (1976) using the full nonlinear 
theory for a beach of constant slope. 

1. Introduction 
In  the preceding paper (Whitham 1976), both the shallow-water approximation 

and the full water-wave theory are used to discuss nonlinear effects in edge waves 
for the case of a uniformly sloping beach. In  that case the shallow-water approxi- 
mation gives anomalous results for the amplitude decay away from the shoreline. 
This is attributed to the breakdown of the approximation as the depth increases. 
In  this note, the shallow-water theory is reconsidered for more genera1 depth 
distributions which may be taken to remain finite and shallow at infiniky. For 
finite depth, the results are similar to those of the full theory for a beach of 
constant slope. They differ in detail because the two cases now refer to different 
situations: in one the depth offshore remains small compared with the wave- 
length while in the other it becomes large (in which case the precise depth distri- 
bution in the deep water is irrelevant since the waves are no longer influenced by 
the bottom). 

Even in linear theory, the shallow-water approximation has undesirable 
features for constant slope, since i t  predicts an infinite number of trapped 
modes at the shoreline and incoming waves with non-zero amplitude at infinity 
are not possible. The full linear theory predicts just a finite number of edge 
waves and a continuous spectrum of incoming waves (Ursell 1952). Again the 
differences can be resolved by taking a depth distribution which becomes con- 
stant a t  large distances Ecom the shore. We discuss in some detail the spectrum 
of the operator associated with the linear theory and show that it has a finite 
number of isolated points (edge waves) and a continuous part, in agreement 
with the full linear theory. Then the nonlinear corrections for the lowest-order 
mode are developed as in the previous paper. 
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2. Linear theory 
The shallow-water equations for a depth profile h(y)  are 

I (1) 
$t+B$:+B$;+sl;= 0, 

Q 4- { ( M Y )  + 6) $zlz + {(h(Y) + 5) $Ju = 0, 

where 6 is the surface elevation, q4 is a velocity potential for the horizontal 
velocity field, y denotes the offshore co-ordinate and x the longshore co-ordinate. 
From the linearized form of (1) we obtain the following equation for 6: 

( 2 )  

Lf+ Af (hk-lf')' + ( A  - kh)f = 0, (3) 

(h5,), + h5zz - g-%t = 0. 

For a travelling-wave solution of ( 2 )  of the form = f ( y )  sin(kz-wt), f satisfies 

where h = w2Igk. In  order to describe edge waves we need to discuss the spectrum 
of L. 

For a constant beach angle /?, h(y)  = /?y  and we have Laguerre's equation. 
The spectrum is positive and discrete; the eigenvalues are w2/gk = (2n+ 1)b. 
However, this leads to the various discrepancies noted above. To model more 
realistic depth distributions, we choose h to be an increasing function such that 
h ( y )  - /3y as y+O and h(y) = h, for y 2 1,. 

The domain of L is restricted to a class of functions which are finite as y+O. 
The operator L is self-adjoint, therefore the spectrum is confined to the real axis. 

First, there are no points of the spectrum in the range h < 0, for in that case 
any solution of (3) which is regular at the origin has f and f ' of the same sign; 
it follows, writing (3) as 

that I f 1  increases monotonically and can not be bounded at infinity. 

formation. This isf(y) = h d ( y ) u ( s ) ,  where 

hf' = kv, V' = (kh-A) f ,  

To find the spectrum of L in h 2 0, it is convenient to use the Liouville trans- 

s (y )  = 1; k)h-*(t) dt. 

The transformed equation for u(s )  is 

where 

(Lo+A)u = u " + ( A - q ) u  = 0, 

q = k h - - - + -  1 V2 h" 
16kh 4k' 

(4) 

Since the Liouville transformation, is in this case unitary, the spectrum of Lo 
is the same as the spectrum of L. The general qualitative behaviour of q is the 
following: since h(y)  - /?y for y - f  0, q(s) - - 1/4s2 for s+O; q(s) is an increasing 
function, bounded by kh,; q(s) = kh, for s 2 s,; q(s) has just one zero, which is 
smaller than sl. Thus q is a potential well of infinite depth at  the origin, width 
s1 = O { Z , k * ~ - ~ )  and height kh1. 
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For h 2 kh,, the solutions of (4) are oscillatory at infinity, and this range 
gives the continuous spectrum. (The relevant theorems are in Titchmarsh 1962, 
ss5.6, 5.7, 5.15.) For 0 < h < kh,, there will be point eigenvalues (edge waves), 
whose number increases with the 'size' of the well, which is measured by 

Sl(khl)* = O(kZ,). 

A natural choice for the depth distribution which incorporates the edge 
effect and remains shallow at infinity is 

h ( y )  = /3y for 0 < y < ZI, h ( y )  = h1 = PIl for y 2 I , .  (5) 

However, the discontinuity in h' would lead to singular functions in Q, so as an 
example for (4) we take a smoothed version: h ( y )  = /3y for 0 < y < I , ,  h ( y )  equal 
to a smooth increasing function for 1, 6 y < I, and h ( y )  = h, for y 2 I,. If h, = /310 
and is assumed fixed, we have 

BP2s2- 1/4s2 for 0 < s < 2(kho)t//3, 

q(s) = smooth function for 2(kh0)*//3 < s < sl(/3), i kh, for sl(/3) < s < co. 

Here the size of the well is measured by 2(kh0)*/43. Comparison of the potential 
qin the interval 0 < s < 2(khO)*//3 with the potential t/3zsz for Hermite's equation 
confirms that for 0 < h < kh, there are points in the spectrum (for sufficiently 
small 8) and that their number increases as /3 decreases. 

The overall conclusion is that the nature of the spectrum for finite depth at  
infinity is the same as in the full linear theory for uniformly sloping beaches. 

Finally we return to (5) and work directly with (3) to find an explicit approxi- 
mation to the linear dispersion relation for the lowest edge wave. We need the 
solution of 

y f " + f r + ( w 2 / g / 3 - k 2 y ) f  = 0, 0 < y < 11, (6) 

(7) f"  + (w2/gh, - k2)  f = 0, Z, < y < a. 

The interesting approximation for this discussion is for small /3; this corresponds 
to large I ,  if h, is kept fixed. For large 1, the solution of (6) is assumed to be close 
to  edky,  and w2/g/3 is close to k.  (These are the results for I ,  = co.) So we take 

where e will be related to  2, in the course of the argument. Then to  first order in e 

y f "  +f' + ( k  - k2y)f  = - ke-kg. 

The solution bounded at y = 0 is 

The appropriate solution of (7)  is 
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Since f and f ’  are continuous at y = I , ,  the impedance f’(Il)/f(Zl) must be the 
same for (8) and ( 1  0) .  From ( 8 )  and (9), 

f ( I , )  N e-kzl +eek11/4k11, f’(Z,) N - ke-kzi +eeW1/41,, 

f ’(Z,)/f (Il) N - k ( l  -ee2Ml/2kZl), kl, % 1. 

(The second terms remain small since ee2Ml/kI, is ultimately found to be small.) 
From ( lo), 

since w2 N gkj3 = gkhl/l, is a sufficient approximation in p. Therefore, for the two 
values off’(Z,)/f(I,) to agree 

e = e--2Mi, w2 = gpk( 1 - e - 2 K )  + O(e-4kh). ( 1 1 )  

f’(ll)/f(ll) = - k p  -“ - ( 2 k W 1 ,  

3. Nonlinear corrections 
We now find the nonlinear corrections to the lowest edge-wave mode. Following 

Whitham (1976),  we consider Stokes’s expansions for q5 and 5 in the form for a 
travelling wave, and take 

4 = a p ( Y ,  8) + a 2 p ( y ,  e) + a34(3)(y, 8) + . . . , (12) 

g = agyy, 8) + a2g(yy, 8) + a3~(3)(y,  e) + . . . ,- (13) 

w = w,+a2w2+ ..., (14) 

where 0 = kx-wt .  These are substituted in (1) to obtain equations for the 
successive orders. 

The first-order problem is 

(hct))u - (wt/g - k2h) c# = 0, c(l)(O, 0 )  finite. (15) 

(hfh?)v + (w%/g - k2h)ft1) = 0, f(l’(0) finite. (16) 

Let [(l) = f(l) cos 8. Then f(l) satisfies 

Choose wt/g to be the lowest eigenvalue of (16 ) ,  and let E(y) denote the corres- 
ponding edge-wave solution for f(l). Notice that E(y)  cc e - W  for y 2 I, ,  where 

The lowest-order solution is 
= ( 1  - wi/gk2hl)*. 

Q1) = E(y)  cos 8, = - gw;lE(y) sin 8. 

The second-order problem takes the form 

(17) 1 - 00 # f )  + gc(2) = g2k2U,’(dz)(y) + S2)(y) cos 28), 

- wo [h2) + (h@) y + k2hq$$) = gw;1k2T(2)(y) sin 28. 

Let [f2) = gk2wom(2)(y) +f(2)~os 28. Thenf(2) satisfies 

(hfp’)6/ - (40219- 4k2h)f(s  = k2B2) (y ) ,  f @ ) ( O )  finite, (18) 

where R(2) is a quadratic in E and R@) = O(e-2pY) as y-too. We assume that the 
eigenvalues of the operator (hf’)‘ - (nkj2hf are not integer multiples of the 
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lowest eigenvalue wt/g.  Therefore, there is a solution of the second-order problem 
(18) of t,he form 

C(2) = f (2)(y)  c‘os 28 + gk2w;lm(2)( y ) ,  qP) = gkw;l P( y )  sin 28, 

where f 2 ) ,  d2) and Z(2) are O(e-2pkv) as y+ 03. 

The third-order problem is 

(h[f))g - (wi/g - k2h) [&y = w,g-l( - 2w2 E ( y )  cos 8 + w , 7 ~ ~ R ( ~ ) ( y )  cos 8 

+ ~ ~ k 2 8 ( 3 ) ( y )  cos 38), Q3)(0, 0) finite. (19) 

The forcing term in (19) proportional to cos 38 does not resonate, hence it gives 
a contribution O(e-3pku) as y +  00. The crucial part of the discussion of the non- 
linear problem concerns the resonant terms in (19) proportional to cos 8. Let 
Q3) = f(3) cos 8. Then f 3 )  satisfies 

(hfb3))u+ (w;/g- k2h)f(3) = wOgc1( - 2w,E(y) +w0k2B3)(y) ) ,  f 3 ) ( 0 )  finite. (20) 

In  order to have a square-integrable solution which satisfies the boundary condi- 
tion at the origin, the right-hand side of (20) must be orthogonal to the function 
E ( y )  (see the discussion of equation (20) in the preceding paper). This orthogona- 
lity condition determines w2: 

w2 = +ywok2, where y = JOm &@)(y) E ( y ) d y / s m  E 2 ( y ) d y .  (21) 
0 

The expression for R(3) in terms of E is complicated for a general h(y ) ,  and in 
any case E is not known explicitIy. But E = O(e-@Y) and = O(e-3pku) as 
y+co, so y will differ little from the value y = + obtained for the case h ( y )  = by. 
More precisely, if h = py for 0 < y c Z,, then, as shown in (l l) ,  the correction is 
O(e-2Mi). 

However, finding small changes in the dispersion relation was not the object 
of this investigation. The questions concerned the interpretation of the behaviour 
~ f f ( ~ ) ( y )  as y - too  and the uniform validity of the expansions. 

To study the behaviour of f ( 3 )  as y+co,  we solve (20) by variation of para- 
meters. The solution is 

f (3VY)  = 4 g-lk2E(y) W(Y 1, 

where 

In  all cases W ( y )  + co as y -+ co, so the third-order terms in (12) and ( 13) become 
large compared with the first-order terms, which are proportional to E(y), and 
the expansions are not uniformly valid as y -+ co. We have 

[ = a(E(y) + W,2q-lk2a2E(y) W ( y ) )  cos 8 + . . . . 
For large y, E ( y )  cc e-pkg, so this becomes 

5 N a(e-pkg+wtg-1a2k2e-r”kYW(y))cos8+ ... . 
The method of strained co-ordinates suggests that this is the Taylor expansion of 

5 N a exp { - p k y  + wig-fa2k2W(y)}  cos 8, (23) 
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and that this modified form is the correct, uniformly valid one. For the beach of 
constant slope discussed by Whitham, h(y) = By, E = e-ky, R@) = e--3ky 

and W(y) N (4kP)-110gky as y-+co. 

The logarithmic behaviour seemed unnatural and was attributed to the inade- 
quacy of the shallow-water theory for this case. This view was confirmed, since 
the full water-wave theory gave W(y) cc y and could be interpreted satisfactorily 
as yielding an amplitude dependence in the rate of decay. We are now in a posi- 
tion to discuss the behaviour for more general distributions h(y) which do not 
violate the shallow-water approximations. 

The asymptotic behaviour of W is given by the first term in (22), i.e. 

When h + h, as y -+ 00, we have E( y) cc e-pk*, R@)( y) K e--3pku 

and W(Y) (Yl2PkhJ Y- 
This is the same type of behaviour as in the full theory and again we have a 
clear interpretation of the result as a nonlinear modification to the rate of the 
exponential decay. According to (23) the appropriate rate of decay is now 

It is interesting that the term (24) originates from the frequency correction 
w2, introduced in (14) to eliminate secular terms in the Stokesexpansion, but then 
leads to non-uniformities in y! It is unusual in nonlinear vibration problems that 
terms needed to construct a uniform expansion in one variable produce non- 
uniformities in other variables. However, in simpler examples the region con- 
cerned is finite in space, and then all non-uniformities appear in the time variable. 
When Stokes expansions are used to discuss periodic solutions which represent 
trapped modes in infinite regions, we may expect the behaviour found here. 
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